Libri di Antonella Giacomin
Unità 4. Ricerca di regolarità: la griglia dei numeri
Giancarlo Navarra, Antonella Giacomin
Libro
editore: Pitagora
anno edizione: 2003
pagine: 52
Sregolario. Tutto quello che NON dovreste mai sognarvi di insegnare in Matematica
Antonella Castellini, Gabriella Romano, Alfia Lucia Fazzino, Elena Marangoni, Fabio Brunelli, Paola Hippoliti
Libro: Libro in brossura
editore: Sintab Edizioni
anno edizione: 2024
pagine: 116
Lo Sregolario invita a ripensare l'insegnamento della matematica, sfidando l'abitudine di trasmettere regole rigide e nozioni da memorizzare, spesso percepite come assolute e immutabili. Attraverso brevi testi provocatori e pillole di riflessione, il libro stimola docenti e appassionati a discutere e riflettere, anche all'interno dei dipartimenti, sulle pratiche di insegnamento, ad aprirsi a modalità didattiche basate su argomentazione e risoluzione di problemi e a superare le pratiche dettate dalla "regolitósi" che spesso frena il pensiero critico e la creatività. Lo Sregolario invita a un cambiamento radicale e a un insegnamento che possa davvero trasformare il rapporto con la matematica.
Unità 5. Le piramidi di numeri
Giancarlo Navarra, Antonella Giacomin
Libro: Libro in brossura
editore: Sintab Edizioni
anno edizione: 2024
pagine: 76
Le Unità della Collana possono essere viste come modelli di processi di insegnamento/apprendimento dell'aritmetica in una prospettiva algebrica e intendono offrire agli insegnanti, prima che percorsi didattici da attuare in classe, l'opportunità di riflettere sulle loro conoscenze e sul loro modus operandi e di approfondire le relazioni fra prassi e teoria. Questa unità intende favorire lo sviluppo del pensiero relazionale. Attraverso l'esplorazione di 'piramidi' formate da un numero crescente di 'mattoni' contenenti dei numeri si giunge alla rappresentazione della rete di legami fra i numeri stessi. L'attività inizia in un ambiente aritmetico per ampliarsi all'algebra e alla scoperta ingenua dell'uso delle lettere e delle equazioni.
Unità 11. Viaggio alla conquista della proprietà distributiva
Giancarlo Navarra, Antonella Giacomin
Libro: Libro in brossura
editore: Pitagora
anno edizione: 2008
pagine: 176
Unità 8. Esplorazioni alla ricerca di leggi di corrispondenza
Giancarlo Navarra, Antonella Giacomin
Libro
editore: Pitagora
anno edizione: 2005
pagine: 92
Il progetto ArAl è dedicato al rinnovamento dell'insegnamento dell'area aritmetico-algebrica nella scuola dell'obbligo. Esso si colloca all'interno della cornice teorica denominata early algebra (la prima algebra) ove si sostiene che i principali ostacoli cognitivi nell'apprendimento dell'algebra nascono in modi spesso insospettabili in contesti aritmetici e possono trasformarsi in blocchi concettuali anche insormontabili allo sviluppo del pensiero algebrico. L'ipotesi è che sia possibile aggirare tali difficoltà attivando sin dai primi anni della scuola primaria in aritmetica forme di pensiero attuate in una prospettiva algebrica. Ogni fascicolo della collana è accompagnato dall'indicazione delle classi per le quali è stata concepita la relativa Unità (I: scuola dell'infanzia, E: scuola primaria, M: scuola secondaria). Questo fascicolo conduce gli alunni alla conquista della legge che regola la struttura di situazioni problematiche e alla sua rappresentazione mediante il simbolismo matematico. Le situazioni hanno forti supporti visivi in modo che l'aspetto percettivo possa aiutare a comprendere l'ambiente nel quale gli alunni conducono le loro esplorazioni.
Unità 7. Studio di regolarità: dai fregi alle successioni numeriche
Giancarlo Navarra, Antonella Giacomin
Libro
editore: Pitagora
anno edizione: 2005
pagine: 100
Il progetto ArAl è dedicato al rinnovamento dell'insegnamento dell'area aritmetico-algebrica nella scuola dell'obbligo. Esso si colloca all'interno della cornice teorica denominata early algebra (la prima algebra) ove si sostiene che i principali ostacoli cognitivi nell'apprendimento dell'algebra nascono in modi spesso insospettabili in contesti aritmetici e possono trasformarsi in blocchi concettuali anche insormontabili allo sviluppo del pensiero algebrico. L'ipotesi è che sia possibile aggirare tali difficoltà attivando sin dai primi anni della scuola primaria in aritmetica forme di pensiero attuate in una prospettiva algebrica. Ogni fascicolo della collana è accompagnato dall'indicazione delle classi per le quali è stata concepita la relativa Unità (I: scuola dell'infanzia, E: scuola primaria, M: scuola secondaria). Questa unità propone un percorso che, partendo da situazioni iniziali concrete (fregi, disegni, cornici) costruite mediante la ripetizione di uno stampino attraverso l'esplorazione individuale, di gruppo o di classe e la discussione collettiva sulle intuizioni e le scoperte effettuate, conduce gli alunni alla conquista del concetto di progressione aritmetica e alla possibilità di descriverla mediante il simbolismo matematico.